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ABSTRACT
Synchronization ofmovements to auditory rhythmic cues, such asmusic ormetronomes, often occurs spontaneously. Nonetheless,
important interindividual differences exist in auditory–motor synchronization (AMS). Effects of rhythm onmovements are partly
modulated by rhythmic abilities, which include beat perception, motor production, and sensorimotor integration. These rhythmic
abilities are often assessed using finger-tapping tasks, which can be performed in highly controlled environments and are easy to
implement. In this article, we present limitations associated with finger-tapping tasks and propose gait as an alternative model for
investigating and training rhythmic abilities. We focus on three key elements that differentiate gait from tapping and are critical
in assessing AMS: the need to coordinate multiple effectors, emergent timing associated with continuous actions, and movement
automaticity. Interestingly, cued–gait interventions (i.e., walking to rhythmic auditory cues for several weeks) have shown positive
effects on all aspects of rhythmic abilities, while tapping interventions (e.g., playing tablet-based serious games)might lead tomore
limited transfer. In sum, gait offers a functionally rich behavioral model that can capture the complexity and ecological validity
necessary to study and train AMS.

1 Introduction

Synchronizing movements to sound is a natural response in
humans. This behavior can be deliberate, as in dancing or
clapping along music, or spontaneous, like when we tap our foot
or nod our head without thinking during a concert. The beat
is a basic characteristic of rhythm in music, and it underlies
most pieces. Its temporal regularity makes it predictable. In turn,
predictions enable us to coordinate movements to the perceived
regularities, such as during speaking, walking, dancing, or play-
ing a musical instrument. The ability to align movements to
an auditory beat (auditory–motor synchronization, AMS) arises
early in life [1, 2] and is widespread in the general population [3,
4]. Difficulties in AMS have been linked to neurodevelopmen-
tal [5–8] and neurodegenerative disorders [9, 10]. Interestingly,
patients with motor disorders such as Parkinson’s disease can

benefit from rhythmic auditory cues (for reviews, see Refs. [11,
12]). Gait improvements such as reduced variability, increased
speed, and increased stride length are well documented in these
patients [13–16].

These effects of rhythm on movement may be possible due to the
tight link between auditory and motor areas in the brain [17–19]
(for a recent review, see Ref. [20]). When listening to an auditory
beat (in the absence of movement), a broad neural network
including auditory regions, motor regions, and sensorimotor
integration areas is activated. It is no surprise that areas associated
with audition such as the superior temporal gyrus are active
during listening tasks. More surprisingly is the activation of
the supplementary motor area, basal ganglia and cerebellum
[17, 21–23], typically known for their role in motor control and
action planning in the absence of external rhythmic stimulation
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[24–26]. While the basal ganglia (e.g., the putamen) appears
central in beat processing, areas like the supplementary motor
area and the cerebellum are particularly active for perceiving
complex rhythms [27]. Cortical and subcortical regions involved
in beat perception are thus overlapping with those involved in
action planning and production. A theory accounting for the tight
link between perception and action is the Action Simulation for
Auditory Prediction (ASAP) hypothesis, which postulates that the
internal (unconscious) simulation of movements by motor areas
enables precise temporal predictions of the upcoming stimulus
[28, 29]. In turn, these predictive abilities improve auditory
processing [30] and thus, beat perception, which is necessary for
AMS [16, 31].

AMS can be modeled using different approaches. Computational
models, such as the Wing and Kristofferson [32] model, distin-
guish two key components in rhythmic movement production:
an internal clock underlying spontaneous movement rate, and a
motor implementation process that introduces delays to produce
the actual movement. During AMS, sensorimotor delays must be
compensated to reach a synchronized state. Such compensation
happens through implementation of phase and period adjust-
ments [33, 34]. Another approach for understanding AMS derives
from the dynamical system theory. In this framework, move-
ments and auditory cues are modeled by two distinct oscillators,
which both have their own preferred frequency. Spontaneous
movement rate (e.g., uncued step cadence forwalking) defines the
preferred frequency of the movement oscillator, while the beat of
the auditory stimulus constitutes the frequency of the other oscil-
lator. The distance between the oscillators’ frequencies defines
the synchronization regionwhere coupling (i.e., synchronization)
is possible. For coupling to occur, the two frequencies must be
sufficiently close [35, 36] or their ratio be close to an integer
ratio [37]. The larger the synchronization region, the greater
the coupling strength. If the stimulus’ frequency is too far from
the spontaneousmotor frequency, however, synchronizationmay
suffer [35]. An influential model of rhythm perception—the
dynamic attending theory [38, 39]— builds on dynamical system
theory. According to the dynamic attending theory, temporal
predictions, which are critical for achieving AMS, derive from
the coupling of internal neurocognitive oscillations [40–42]
reflecting attending mechanisms to rhythmic auditory stimuli.
Indeed, attention oscillates through time, and attentional energy
is expected to bemaximal whenever a sensory event is most likely
to occur. For example, the metrical structure typically found in
music leads to the perception of anunderlying beat or pulse,while
driving strong expectations for sensory events (e.g., notes, chords)
to fall on the beat. When notes occur in-between beats, as is the
case in syncopated rhythms, temporal expectations are violated
[43] leading to prediction errors. In the predictive coding theory
[44, 45], the brain aims tominimize prediction errors by adjusting
internal models until predictions match sensory input. When we
dance to syncopated rhythms, we typically move to the beat of
music, thus minimizing prediction errors [44]. Together, these
models highlight the interplay between intrinsic motor rhythms,
external auditory cues, and attention, offering a comprehensive
framework for understanding the mechanisms underlying AMS.

In sum, different theories can model the processes and brain
mechanisms underlying AMS. In addition to these general
mechanisms, a critical element to achieve AMS pertains to an

individual’s ability to track the beat and coordinate motor activity
leading to synchronization.

2 Rhythmic Abilities

Rhythmic abilities encompass beat perception,motor production,
as well as sensorimotor integration. Beat perception is the ability
to extract the beat from an auditory sequence without overt
movement, while motor production refers to the production of
rhythmicmovementswhether a pacing stimulus is present or not.
Finally, sensorimotor integration is the process where stimulus
timing is mapped onto action timing during planning, eventually
leading to precise AMS. These abilities are tested with a variety
of perceptual and production tasks, such as the beat alignment
test (BAT) [46], and paced and unpaced finger tapping [36]. A
very common model to test AMS and motor performance is
finger tapping [36, 47]. Test batteries such as the Harvard Beat
Alignment Test (H-BAT) [48] and the Battery for the Assessment
of Auditory Sensorimotor and Timing Abilities (BAASTA) [4]
have been devised to provide a systematic assessment of rhythmic
abilities. For example, tasks taken from BAASTA are capable
of characterizing individual differences in both musicians and
nonmusicians. Notably, adult norms for BAASTAwere published
for the first time by Dalla Bella et al., providing a reference point
for its application to clinical populations [4].

Studies in quite large cohorts generally reveal a link between
rhythm perception (e.g., tested with the BAT) and AMS [49, 50].
These relationships point to a general rhythm system, supporting
both perception and action—a view which is compatible with
the ASAP theory [28, 29]. The idea of a general rhythm system
is supported by clinical studies in patients with movement
disorders [51]. In Parkinson’s disease, movement velocity [52] and
variability [53] show cross-effector correlations when performing
rhythmic tasks such as tapping, walking, and speaking. Motor
variability can further be predicted by patients’ beat perception
[53]. Finally, there is evidence that training AMS in this popula-
tion can improve motor performance across different effectors, a
benefit linked to improved beat perception [54]. In the context of
rehabilitation, having a generalized rhythm system is of interest
as patients can gain cross-effector benefits from training a single
effector [54].

Although individuals with neurodevelopmental [5–8] and neu-
rodegenerative disorders [9, 10, 55] show deficits in rhythmic
abilities, they can also be selectively impaired in perception or
production. In fact, some studies report a lack of relationship
between beat perception and AMS in healthy and clinical pop-
ulations [3, 4, 48, 56–59]. This suggests, that even though rhythm
perception and production are tightly coupled, there may still be
some degree of independence at the functional level, and that the
underlying mechanisms may be dissociated in populations with
disorders. Moreover, there is preliminary evidence in patients
with Parkinson’s disease that rhythmic training via finger tapping
can transfer to verbal production (i.e., by reducing motor vari-
ability when repeating syllables in a loop as fast as possible), but
not to walking, as interstep interval variability remains similar
post intervention [54]. Thus, timing-control mechanisms may
differ for tapping (aminimalmotor task) andwalking (a full-body
task), raising the question of whether assessingmotor production
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and sensorimotor integrationwith finger-tapping tasks suffices to
gain a good understanding of one’s rhythmic profile.

Notably, finger tapping as a model for testing AMS has many
advantages. It is easy to implement both in laboratory and clinical
settings as it requires minimal equipment, such as general MIDI
instruments or off-the-shelf mobile devices [49, 60]. Tapping can
also be tested in a brain-imaging scanner to investigate the neural
correlates of rhythmic abilities [21]. At the same time, finger
tapping presents several drawbacks. It is not an ecological task
and may thus limit our understanding of AMS and its underlying
mechanisms. Indeed, conclusions drawn from highly controlled
tapping experiments may not transfer fully to everyday-life situa-
tions, likewalking or speaking. For example, walking requires the
coordination of multiple effectors and is mostly automatic, while
tapping is primarily voluntary and engages only one effector
with limited constraints. There are also no consequences in
producing unequal finger taps, while unstable gait predicts falls
[61]. Walking or speech articulation have clear functional roles,
which are absent from tapping. Assessing finger tapping alone
may thus not give a full picture of an individual’s rhythmic profile.

The aim of this article is to propose gait as an alternative
behavioral model for studying AMS. Walking is an inherently
rhythmic behavior, as is visible in the regularity of the gait
cycle, with high ecological validity. It is rooted in biology as an
evolutionary trait, whichwas acquired over 4million years ago by
our ancestors, as a response to critical environmental pressures
linked to changing habitat and a need for efficient harvest [62,
63]. Bipedalism was also paramount in the evolution of other
human traits, like speech [64]. Moving from a quadrupedal to an
upright position freed the thorax from its support role, leading
to the formation of the modern vocal tract and uncoupling
of breathing from locomotor functions, a necessity for speech
production [64, 65]. Gait emerges spontaneously within the first
year of life and follows a regular development in children. We
usually can walk at age one, and reach a gait pattern similar to
adults’ by age seven [66]. Although walking is mostly automatic,
it remains under voluntary control for initiation, termination,
turning, and obstacle avoidance [67]. Unlike tapping, gait also has
a clear functional role. Locomotion is subjected to environmental
constraints and requires the coordination of all limbs for the
body to stay upright. Loss of coordination may compromise
balance, leading to falls and injuries [68]. Altogether, gait offers an
evolutionarily grounded and functionally rich behavioral model
that can capture the complexity and ecological validity necessary
to study AMS.

3 Walking as a Model of Auditory–Motor
Synchronization

3.1 Single-Effector Versus Whole-Body
Movements

When walking to an auditory beat, the alignment of footfalls
to the rhythmic stimulus is obviously more complex than for
finger tapping, as gait requires whole-body movements and
interlimb coordination. Accurately aligning steps to a pacing
stimulus irrespective of the movements of other effectors would
lead to an unnatural gait pattern. As such, gait analysis requires
taking into account all parts of the lower limbs simultaneously

[69, 70]. Analyses assessing effects of a pacing stimulus on
gait often focus on spatiotemporal parameters (Figure 1) like
gait velocity, cadence (i.e., number of steps per minute), stride
length, and variability of interstep intervals and of stride lengths
[71]. More rarely, lower-limb kinematics (e.g., joint angles) and
kinetics (e.g., joint moments) are also assessed [72–74]. All of
these gait parameters are very much affected by gait speed [75].
Speed is determined by cadence and stride length, which are
most often targeted by rhythm interventions [76, 77]. Because
deviating from gait preferred frequency will impact all effectors
up the kinematic chain, the choice of pacing frequency should
be carefully considered. Conversely, in tapping, changes in the
finger’s rate and/or trajectory should not affect other limbs. In
sum,AMS during gait involves complexwhole-body coordination
unlike finger tapping, requiring a comprehensive analysis of
spatiotemporal and biomechanical parameters.

The coordination of multiple effectors is likely to rely on timing-
control mechanisms that differ from those needed to produce
regular finger taps. Alternatively, evidence of a link between
tapping and walking performance would suggest similar mech-
anisms, in favor of a generalized rhythm system. At the moment,
there is conflicting evidence regarding the existence of such
a link. Indeed, previous studies attempted to predict rhythm-
induced gait changes, based on participants’ rhythmic abilities
assessed with finger tapping [10, 78]. In patients with Parkinson’s
disease, poor AMS during tapping predicts an increase in gait
speed following a cued–gait intervention [10]. AMS however does
not seem to predict motor variability during gait in a sample
of Parkinson’s patients and controls [78]. One could argue that
these null relationships stem from the comparison of motor
production measures (e.g., variability of interstep intervals) to
AMS variables. However, intertap interval variability was not
correlated to interstep interval variability after a 6-week rhythm
intervention [54]. Interlimb coordination, which is absent from
tapping but inherent to gait, could be the source of the discrep-
ancy. Altogether, it is unlikely that tapping performance can fully
predict gait adaptation to rhythmic auditory cues, although more
research directly comparing the two is needed.

3.2 Discrete Versus Continuous Movements

Discrete movements are defined by salient events interspersed by
breaks [79].During tapping, finger velocity reaches zerowhen fin-
ishing its downward trajectory and then changes direction before
reaching zero again at the apex. On the other hand, walking
is defined as continuous, as there are no breaks in the motion
until the task is stopped. Timing-control mechanisms of discrete
and continuous movements have been compared in the past
using the dual-task paradigm [80, 81]. In the present review, we
consider dual-task paradigms that involve performing a primary
motor task together with a secondary task that can be motor
[81], cognitive [80], or both (i.e., name digits presented two cycles
ago in an N-back task) [82]. The performance of the secondary
task interferes with the primary task by increasing cognitive load.
Interestingly, interference is not the same when the primary task
is discrete or continuous. For example, when asked to perform a
simultaneous workingmemory task, cellists’ variability increases
for discrete (i.e., staccato), but not continuous (i.e., legato) upper-
limb bowing movements [80]. Here, the cognitive task only
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FIGURE 1 The gait cycle expressed in percentages. Gait events, phases, and spatial parameters are expressed for the right leg (in blue).

interferes with the discrete, but not the continuous motor task.
Similar results are observed while performing two competing
motor tasks, namely, tapping andwalking. Indeed, young healthy
adults canmaintain a 375-ms tapping rate independently of a 600-
ms walking rate [81]. However, if stepping becomes a discrete
task (i.e., unilateral or bilateral foot tapping), finger-tapping rate
increases to reach a 2:1 ratio with stepping rate. Thus, a discrete
task cannot be performed independently of another discrete
motor task or a purely cognitive task. Overall, the results indicate
that discrete movements require more cognitive resources than
continuous ones.

It has been proposed that temporal regularity of discrete move-
ments relies on a pacemaker (i.e., internal clock) [83]. According
to clock models, pulses generated by the pacemaker are stored in
working memory and compared to timing of discrete events [84].
Error correction thus happens for each repetition. On the other
hand, continuous movements would rely on emergent timing,
which arises from movement dynamics [85, 86]. At 2 Hz and
above, flexion–extension of the finger becomes a continuous
movement, as motion breaks are no longer observed in the finger
trajectory [86]. Thismay explain the tendency to speed up discrete
actions during simultaneous performance of a cognitive task [80,
82]. By increasing movement rate, action timing may become
more dynamically driven, freeing up cognitive resources. These
resources can then be allocated to the cognitive task in a dual-task
paradigm.

This speeding-up advantage goes against the view of dynamical
systems theory, which predicts a loss of stability at increased
tempi [87]. Torre and Balasubramaniam [88] proposed that
clock models, such as the Wing and Kristofferson [32] model,
and dynamical systems could explain the differences observed
between discrete and continuous movements during AMS,
respectively. Negative lag 1 autocorrelations (i.e., shortened inter-
vals are followed by lengthened ones and vice versa) measured

when finger tapping on a surface show that error correction
happens on each repetition, while the lack of negative lag 1 auto-
correlations for continuous movements imply that action timing
is adjusted continuously as proposed by dynamical systems [89].

Intuitively, we would expect the simultaneous performance of
two continuous movements to be unchallenging, if timing can
be dynamically driven. In two studies [90, 91], Sakamoto et al.
showed that leg cycling rate affected arm cycling rate but that arm
cycling rate did not impact leg cycling rate. These studies suggest
that there could be a difference between upper- and lower-limb
rhythmic motion, despite both movements being continuous.
Similar observations aremadewhen looking at AMS. Participants
are better at matching metronome tempo during foot stepping
than hand circle drawing, despite foot stepping being a discrete
motion [92]. Further, synchronization can be maintained when
stepping in place regardless of tempo, while synchronization
during circle-drawing is negatively impacted by faster pacing
stimuli. Despite these results, it is unlikely that differences
between upper- and lower-limb rhythmic motion are effector
driven. Indeed, we mentioned previously that rhythmic tapping
with the finger could only be maintained while walking, but not
foot tapping. This discrepancy could be due to the discrete nature
of foot tapping, but also to gait automaticity. In sum, different
timing-control mechanisms are at play when performing discrete
and continuous movements. These differences are likely to be
relevant when assessing AMS.

3.3 Voluntary Versus Automatic Movements

One could argue that highly trained musicians are experts at
finger tapping, which resembles piano keystrokes and left-hand
motion of guitar and other string players. Indeed, instrumen-
talists often perform better on rhythm production tasks than
nonmusicians [4, 93–96]. For example, Tranchant et al. [97].
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reported intertap intervals with ∼5% variability in musicians and
with ∼6% variability in nonmusicians, similar to values reported
inBAASTAnorms [49]. As forwalking,most of us become experts
during childhood [66]. Interestingly, and in spite of walking
being a more complex multilimb task than tapping, variability of
interstep intervals during gait for young [31] and older individuals
[98] is twice lower than values of intertap interval variability in
musicians [49, 97]. The level of stability achieved during gait may
be due to its automaticity.

Gait automaticity is possible owing to its reliance on specific neu-
ral structures. Gait recruits both spinal and supraspinal neural
networks [99]. The automatic component of gait is implemented
by central pattern generators located in the inferior part of the
spinal cord, which ensure repetitiveness of the gait cycle and
alternating left–right movements at a regular pace when further
monitoring is not needed [100–102]. Gait being autonomous,
stable, and inherently rhythmic, it is oftenmodeled as an inverted
pendulum [103], which makes it an ideal behavior to be studied
under the lens of dynamical systems [104]. As an oscillator, gait
has an intrinsic frequency with little interindividual variability
[105] compared to tapping [106]. As predicted by dynamical
systems [107], coupling to an external oscillator (e.g., rhythmic
auditory cues) during gait is possible if the external frequency
is close enough to spontaneous cadence [35]. Importantly, the
level of automaticity achieved through central pattern generators
explains why we can walk while successfully performing other
tasks [81]. On the other hand, voluntary control is afforded
by cortical and subcortical structures receiving feedback from
central pattern generators and whose functions allow us to
initiate, stop, and change directions, making gait flexible and
adaptable to varying environmental demands [99, 100, 108, 109].
Notably, finger or foot tapping lack the aforementioned automatic
component. As a result, cognitive resources must be shared when
these actions are performed together with a secondary task [82],
leading to greater interference than in a walking task [81].

Overall, the studies reviewed in this section suggest a dissociation
between tapping, which relies mostly on supraspinal structures,
and walking, which is both automatic and voluntary due to
the involvement of central pattern generators and cortical and
subcortical structures, respectively. As it is possible tomanipulate
the degree of automaticity required to complete a gait task (e.g.,
walking on a pressure mat in a lab vs. around a university
campus), gait offers the possibility of studying both voluntary and
automatic components during AMS.

In conclusion, while AMS can be assessed through both tapping
and walking, these tasks differ fundamentally in movement com-
plexity (i.e., fine vs. grossmovements), timing-control, and neural
mechanisms. The choice of the appropriate target movement can
be driven by the research question, while considering the afore-
mentioned differences when designing an experimental protocol.
For example, tapping may be more suited to answer questions
related to aspects of AMS and timing that can be isolated from
whole-body coordination, when minimal motor involvement is
needed, or when the focus is primarily on voluntary motor
control. There are also pragmatic reasons for choosing tapping
over gait. Indeed, walking tasks may be overly challenging for
certain individuals, like stroke patients, making tapping a great
alternative to assess rhythmic abilities. Alternatively, gait offers

the unique opportunity to study both automatic and voluntary
components of motor control. This might be particularly relevant
when working with Parkinson’s disease patients as walking
progressively switches from automatic to attentional control as
the disease progresses [110]. Even though testing AMS using gait
is certainly more demanding than asking participants to perform
a tapping task, gait has the advantage of having high ecological
validity and is likely more scalable to everyday life. In the context
of rehabilitation, gait tasks can inform on functional deficits
linked to autonomy andwell-being that cannot be addressed with
tapping. Figure 2 summarizes the differences between tapping
and walking, which are critical in the design of AMS protocols.

4 Training Rhythmic Abilities

The links we previously described between beat perception and
AMS support the concept of a general rhythm system. This
hypothesis suggests thatmotor benefits for a given effector should
increase following training that is focused on another effector
(i.e., near transfer) or even nonmotor training (i.e., far transfer).
This prospect is particularly relevant for rehabilitating patients
with movement disorders who may experience cross-effector
benefits from training rhythmic abilities [54]. Beyondmovement,
rhythmic abilities and music training have been linked to execu-
tive functions in healthy individuals [111–113], neurodevelopmen-
tal [5–7, 114], and neurodegenerative disorders [115]. For example,
children and adults with attention deficit/hyperactivity disorder
(ADHD) with greater beat perception and AMS abilities display
better performance in cognitive flexibility and inhibition tests
compared to those with poorer rhythmic abilities [5]. Cognitive
flexibility refers to the ability to adapt behavior to changing task
rules [116]. Inhibition involves controlling attention to suppress
or delay dominant responses, while working memory refers to
the ability to retain and manipulate information [116]. Notably,
inhibition control and working memory—both positively corre-
lated with motor production and sensorimotor integration [111,
117]—are crucial aspects of executive functioning. Overall, there
is evidence that rhythmic abilities are associated with enhanced
cognitive functions. Therefore, training rhythmic abilities may
positively influence cognitive performance, which could be par-
ticularly beneficial for slowing the cognitive decline associated
with normal aging or for supporting individualswith neurological
disorders linked to cognitive deficits. In the following section, we
first review interventions specifically targeting rhythmic abilities,
and then present a discussion of howmotor training can enhance
both motor and nonmotor skills.

4.1 Rhythm-Specific Training

Several forms of interventions exist to train rhythmic abilities.
The most general form of training is learning to play a musical
instrument, which typically includes training rhythmic abilities
among other skills. Musicians often outperform nonmusicians
on rhythmic tasks [93, 94]. Interestingly, instrumental music
training shows transfer effects that go beyond music, probably
due to brain-related changes associated with music practice [118].
Although there is currently a debate in the literature regarding
the effect of music training on cognitive functions in children
[119], growing evidence is in favor of musical interventions, more
so than other types of artistic or academic pursuits and sports
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FIGURE 2 Walking as a model of auditory–motor synchronization compared to finger tapping. Reciprocal arrows indicate effects of rhythmic
abilities on motor production and sensorimotor integration, as well as positive impact of gait and finger-based training on rhythmic abilities.

[117, 120–122]. For example, beneficial effects of music training
have been shown in inhibition [117] and working memory [120].
Similar results are also observed in older individuals following
music training [123–125]. Music interventions are particularly
promising for rehabilitation because they are both pleasurable
and rewarding [126]. One particularly interesting form of musical
activity is drumming. Drumming seems to fall somewhere in-
between finger tapping andwalking as it can involve all four limbs
(on a drum set), requires bilateral coordination, and specifically
engages the rhythmic component of music training. Drummers
have been shown to outperform other musicians in rhythmic
tasks [127], although these differences may be limited to more
difficult tasks (i.e., synchronizing to a triplemeter) [128]. Notably,
drummers often must perform two rhythms independently. They
may thus be better at maintaining rhythmic movements [129]
while having to perform a secondary task, althoughmotor control
remains voluntary duringmusic practice, likely relying on similar
neural structures as tapping. Drumming therefore may offer an
alternative model for investigating rhythmic abilities and their
neural mechanisms, while also opening promising avenues for
interventions aimed at enhancing motor coordination and dual-
task performance. However, and in spite of all the benefits linked
with music practice, music lessons are not always accessible due
to barriers such as cost, limited availability of instructors, and
transportation requirements. In addition, music practice trains
more than just rhythmic abilities, making it difficult to isolate
effects of improved rhythmic skills. Therefore, it is essential to
explore alternative approaches to training rhythmic abilities that
may be more accessible and specifically target rhythmic skills,
such as cued–gait training (see Section 4.2) and serious games.

Serious games—designed with goals beyond mere
entertainment—can be used for motor rehabilitation in various
patient populations (e.g., stroke, Parkinson’s disease, cerebral
palsy, etc.) [130], as well as to devise training targeted at rhythmic
abilities [131]. These interventions are particularly appealing

because they are affordable, accessible, and can be performed
at home with minimal involvement from medical professionals.
They may be a suitable alternative for patients with motor
disorders for whom learning to play a musical instrument may
be too challenging. One example of a serious game designed to
enhance rhythmic abilities is Rhythm Workers [131], a tablet-
based game where users must tap in time withmusic to construct
buildings. After a 6-week training period, individuals with
Parkinson’s disease demonstrate improved beat perception
compared to those playing a control game [54]. Enhanced beat
perception is also linked to improvements in motor production
during both manual tasks (i.e., tapping) and verbal tasks (i.e.,
articulating syllables as fast as possible), suggesting that training
rhythmic abilities can transfer to different effectors, regardless
of whether they were specifically targeted during training.
More recently, this approach was applied to training rhythmic
abilities in children with neurodevelopmental disorders. In
a pilot study, we found that a 2-week training is effective in
improving rhythmic abilities in children with ADHD, relative
to an active control condition [114]. Notably, we found first
evidence of an improvement of inhibition and flexibility in
this clinical population [114]. Although serious games offer a
promising approach to enhancing beat perception and motor
production, transfer to other effectors is partial, as interstep
interval variability did not decrease post intervention [54].
Interestingly, playing Rhythm Workers did prevent the increase
in interstep interval variability seen in the active control group
[54]. Nonetheless, this limited transfer effect may be due to
differences in the timing mechanisms employed by various types
of movements, as described in the previous section.

4.2 Gait Training

Another way to implement rhythmic training involves having
patients walk with rhythmic cues, such as metronome tones or
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music clips, in a rehabilitation program lasting several weeks
[132, 133] (for reviews, see Refs. [134, 135]). Locomotion is
essential for autonomy and, consequently, for quality of life
and well-being [136]. Gait rehabilitation offers the advantage of
fostering a functional gain leading to increased independence,
while keeping patients physically active during the training itself.
Having patients walk on a regular basis over several weeks has
been shown to produce positive changes in gait and balance
post intervention, even in the absence of cues [137, 138]. The
rewarding nature of music [126] makes cued–gait training par-
ticularly appealing for motor rehabilitation. Rhythmic auditory
cues can induce immediate improvements during walking in
Parkinson’s disease [16, 76, 139, 140], cerebral palsy [77], and
stroke [141], for example. When performed over 3–24 weeks,
cued–gait training not only improves gait spatiotemporal parame-
ters immediately post intervention [142–144], but also sometimes
after the intervention has ceased [145, 146], though reports
are inconsistent [147]. Interestingly, rhythm interventions also
enhance rhythmic abilities, namely, beat perception andAMS [10,
148].

Gait has both automatic and voluntary components. Timing
involved with voluntary action (e.g., gait initiation, stopping,
and turning) can thus transfer to tapping performance and
other voluntary motor commands. In contrast, motor gains from
rehabilitation designed to focus exclusively on fingermovements,
such as serious games, may not transfer to full-body, continuous,
and automatic movements [54]. Cued–gait rehabilitation may
thus train rhythmic abilities more broadly than finger-tapping-
based interventions.

Oneway to implement cued–gait training is by using technologies
that adapt stimulus-presentation rate to individual cadences.
These technologies have shown positive effects on gait (e.g.,
speed increase) in neurotypical and patient populations [149–
151]. Such technologies can provide metronome cues that match
individuals’ preferred cadence in order to facilitate gait, but can
also provide gradual tempo changes, which could be harnessed
to train beat perception, AMS and gait itself in an enjoyable
fashion. Cochen De Cock et al. tested effects of such intervention
on Parkinson’s disease patients with BeatMove, which provides
musical stimuli synchronized to participants footsteps with
gradual tempo changes to elicit faster cadence. After a 4-week
intervention, patients improved not only spatial and temporal
gait parameters, but also overall physical activity and reported
satisfactionwith the device [152]. These results are very promising
for the design of personalized gait interventions for patients with
movement disorders.

In sum, training rhythmic abilities can lead to benefits in motor
and cognitive performance. Cued–gait interventionsmay be ideal
to train rhythmic skills more broadly, as gait has both automatic
and voluntary components that can transfer to other movements.
Gait also has the advantage of being functional, since it facilitates
autonomy and keeps patients physically active. Combiningmusic
cues with gait training will make interventions more enjoyable
and rewarding. Alternatively,music lessons and specifically drum
lessons, may lead to similar benefits. Future studies comparing
near- and far-transfer effects following cued–gait, serious games
and drum interventions are needed.

5 Practical Implications and Challenges for
Testing Gait

Assessing AMS using gait may seem challenging without access
to expensive motion capture systems or instrumented treadmills,
typically found in biomechanics laboratories. Additionally, using
brain-imaging techniques during gait, such as electroencephalog-
raphy (EEG) or functional near-infrared spectroscopy (fNIRS),
may seem arduous due to their sensitivity to motion artifacts. In
this section, we offer practical ways to implement gait paradigms
using equipment that can be found in music cognition laborato-
ries and protocols that can be easily devised with sets of sensors
and microcontrollers (e.g., Arduino-based).

Data collection in tapping experiments often relies on force
signals from force sensitive resistors (FSRs) to extract tap events.
An example is the TeensyTap device [153], in which an FSR
is connected to a teensy microcontroller board (PJRC, Port-
land, Oregon, USA), coupled to an audio extension shield to
record tap data while providing auditory stimulation. Our team
recently adapted this technology to gait with TeensyStep [150],
offering a cheap and portable alternative to construct flexible
AMS paradigms during locomotion while keeping high level
temporal precision. Codes for TeensyTap (https://github.com/
florisvanvugt/teensytap) and TeensyStep (https://github.com/
dallabella-lab/teensystep) are open source and can be easily
adapted to a researcher’s interests. Using FSRs rather thanmotion
capture systems or instrumented force plates also facilitates the
transfer of AMS protocols to both ecological (i.e., outside the lab)
and clinical settings, as equipping patientswith reflectivemarkers
or a harness may be suboptimal.

Studying gait at the neural level requires portable devices such
as EEG and fNIRS. One drawback of these devices is their
sensitivity to motion artifacts inherent to walking tasks [154–156].
Nonetheless, multiple algorithms have now been developed to
improve signal-to-noise ratio [154], such as the BeMoBIL pipeline
[157], leading to an increasing number of gait publications in the
last two decades [158–160].

Together, these cost-effective and accessible hardware and soft-
ware developments pave the way for assessment of gait and its
neural underpinnings in the context of AMS research.

6 Conclusion and Perspectives

Finger tapping has significantly contributed to our understanding
of AMS due to its simplicity and ease of use in both the laboratory
and at home. It serves as a reliable proxy for assessing AMS
in research and clinical settings when time and equipment is
limited. However, finger tapping is a single effector, discrete,
and mostly voluntary movement which timing heavily relies
on cognitive resources and structures. Tapping is a relatively
unstable motor behavior that is difficult to sustain while simulta-
neously performing other cognitive ormotor tasks. Consequently,
assessing motor production and AMS using only the finger
may provide an incomplete picture of one’s rhythmic profile.
Moreover, findings from finger-tapping tasks may not translate
well to other types of movements such as walking.
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Despite the greater difficulty in testing and measuring gait
performance, walking offers a more comprehensive perspective
on rhythmic abilities. It involves the coordination of multiple
effectors, is continuous, and is largely automatic. Gait training
can improve all dimensions of rhythmic abilities, including
beat perception, motor production, and sensorimotor integra-
tion. Additionally, recent technological advancements such as
Mobile Brain/Body Imaging (MoBI) [161] have made it possi-
ble to investigate more naturalistic movements, like walking,
even at the cortical level. This progress allows researchers to
move beyond highly controlled environments to study rhythmic
abilities through truly rhythmic motor actions.

Studies are now needed to directly compare finger tapping and
walking across various paradigms (e.g., spontaneousmovements,
synchronization, dual tasking) to better understand differences
in timing-control mechanisms. Comparing different types of
interventions across diverse populations will also be essential
for refining the concept of a generalized rhythm system and
developing patient-specific rehabilitation protocols.
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